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Natã Ismael Schmitt

Computer Science
Federal University of Santa Maria

Av. Roraima - Camobi, Santa Maria
email: nischmitt@inf.ufsm.br

Bruno Silva de Castro
Control and Automation Engineering

Federal University of Santa Maria
Av. Roraima - Camobi, Santa Maria

ORCID: 0009-0006-4696-435X

Anselmo Rafael Cukla
Control and Automation Engineering

Federal University of Santa Maria
Av. Roraima - Camobi, Santa Maria

email: anselmo.cukla@ufsm.br

Gabriel Tarnowski
Mechatronics Engineering department

Universidad Nacional de Misiones
Obera, Misiones, Argentina

email: gabriel.tarnowski@fio.unam.edu.ar

Leonardo R. Emmendörfer
Department of Electrical Energy Processing

Federal University of Santa Maria
Av. Roraima - Camobi, Santa Maria

email: leonardo.emmendorfer@ufsm.br

Thiago A. N. De Andrade
Department of Statistics

Federal University of Santa Maria
Av. Roraima - Camobi, Santa Maria
email: thiagoan.andrade@gmail.com

Abstract—Reinforcement Learning is a field of Artificial Intel-
ligence that studies the development of algorithms that learn
to make decisions optimally. In this research, we push the
boundaries of knowledge by exploring deep learning techniques
for robot control in soccer games. Our approach considers a
controlled environment, with the IEEE Very Small Size Soc-
cer robotic competition as a reference. The research’s main
contribution is comparing the Soft Actor-Critic (SAC) and
Deep Deterministic Policy Gradient (DDPG) control algorithms
evaluated in a virtual environment with dynamically altered
game complexity. Specifically, those algorithms are used to model
the actions of a player acting as an attacker in the robotic
competition. Changes in the virtual environment consider the
Curriculum Learning method, which enables a gradual and ef-
fective learning curve during training. The results underscore the
SAC algorithm’s superiority over DDPG in this specific context,
highlighting its greater effectiveness and adaptability. From a
broader perspective, the findings of this research contribute to
a better understanding of how deep learning techniques can be
optimized for applications in competitive robotics.

I. INTRODUCTION

Reinforcement Learning (RL) is probably the area of ma-
chine learning that attracts the most fascination among non-
experts. This is because research in this area is often associated
with robot training [1]. The peak popularization of this field
of knowledge occurred in 2013 when the British company
DeepMind built an algorithm capable of learning to play Atari
games (https://atari.com/) without prior knowledge. It is a
much broader field whose origins of study and research date
back to the 50’ [2].

In short, RL is the field of Artificial Intelligence that studies
the development of algorithms that learn to make optimized
decisions based on a process of trial and error under a
mechanism of rewards and punishments. Through a virtual
environment with controlled parameters, the algorithm (agent)

performs specific actions to achieve a specified objective. A
reward function is used to assign a numerical value, which
tells the agent whether its action contributed to or hindered
the pursuit of the goal. In this way, the algorithm learns
which actions, in which states, contribute to a positive reward,
always seeking to maximize the gain of future rewards. Deep
Reinforcement Learning (DRL) [3] is an essential variation of
RL, which employs the use of deep neural networks to solve
this problem.

Over the years, several works applying DRL techniques in
different contexts have been published. A search on Google
Scholar for the term Deep Reinforcement Learning returns
more than a million articles and other academic contributions,
highlighting the extent of research in this domain. One of
the applications in emerging studies includes using DRL
techniques to control robots in football matches within the
scope of the IEEE Very Small Size Soccer (IEEE VSSS)
competition.

IEEE VSSS robot football is a type of robotics competition
that combines several technologies that cooperate so that the
robots can score against the opponent, based on the rules of
the Brazilian Robotics Competition (CBR) [4].

A game comprises two teams of 3 differential wheel robots,
which are externally controlled. Its dimensions are a maximum
of 8 cm wide, 8 cm long, and 8 cm high. The arena is
1.5 meters long and 1.3 meters wide. An orange golf ball
with well-defined weight and characteristics is used for the
match. The VSSS is widely used as a source of research,
bringing scientific advances to robotics and bringing together
groups that aim to achieve the best robots and control methods.
In Brazil, the main attraction event is the Latin American
Robotics Competition (LARC), with the VSSS and many other
types of competitions taking place annually.



The control of the robots is done via a computer, which,
connected to the camera (positioned above the field), monitors
the movements of these agents in a match. The captured image
is then processed with computer vision algorithms, extracting
variables such as the ball’s position and direction and speed of
all robots on the field, among others. This information is used
by the game control algorithm, which will make decisions
based on the current state. Differential wheel robots can be
controlled through the speeds of each of their wheels so that
the algorithm can generate the final speed of the wheels of
each robot and, consequently, control its movements.

This research aims to use DRL techniques to study robot
control in football matches within the scope of the IEEE
VSSS competition. More specifically, training Soft Actor-
Critic (SAC) [5] and Deep Deterministic Policy Gradient
(DDPG) [6] control algorithms, which were evaluated in a
virtual environment with dynamically changing game com-
plexity. For this, the open source simulator RSoccer [7] was
used through its implementation as a library of the Python
programming language.

In addition to this introduction, this paper is structured as
outlined below. Section II lists some essential works related
to the research topic. Section III presents methodological
details that guided the achievement of the results of this
research, including theoretical aspects about reinforcement
learning, a computational framework centered on the open
source simulator RSoccer [7], the definition of learning
premises and rewards, among others. Detailed analysis of
the scenarios under investigation is presented in Section IV.
Section V addresses final considerations and future proposals.

II. RELATED WORKS

From both theoretical and applied perspectives, researchers
have dedicated themselves to advancing the field of DRL.
In this Section, mention is made of some exponent works,
emphasizing those that have direct links with the findings
presented in this study or are closely related to the lines of
investigation currently under development. The main objective
of the connections is to provide the fundamental theoretical
framework for the scope of this research and to anticipate
future directions within the scope of DRL applied to robotic
control.

The research carried out by [8] presents a comprehensive
overview of the use of RL in robotic manipulation tasks, map-
ping existing knowledge gaps and suggesting future directions
for investigation. The authors undertook a systematic review,
employing a broad sweep of scientific literature, focusing
on electronic databases recognized for disseminating essential
results, such as IEEE Xplore and Google Scholar. In this
process, 42 articles were selected and analyzed, published
since 2013, based on specific inclusion parameters.

In a similar perspective, [9] perform a comprehensive
literature review, covering publications in the period 2015
and 2022, to understand and apply DRL algorithms. These
authors direct their focus to significant advances in the use
of RL in robotics, highlighting the challenges linked to the

transition from strategies learned in simulations to real-world
applications. This study included the analysis of more than
150 academic works, using research platforms such as Google
Scholar, IEEE Xplore, and ArXiv

In a seminal paper, [10] introduced the reinforcement
learning methodology known as Curriculum Learning. This
approach, which prioritizes progressive training in steps of
increasing complexity, is inspired by the effective learning
processes observed in humans and animals. Our research uses
the contribution of [10] to adapt the training environment in
the scenarios considered.

Recently, in [11], they conducted a study in which two types
of neural networks are compared to control the formation of
robots in a VSSS environment considering the DDPG methods
and Double Deep Q-Network (DDQN) [12]. The function of
neural networks is to introduce a controller that acts as a type
of technician who coordinates the role of the robots, be it an
attacker, defender, or goalkeeper during the match.

The work presented by [13] explores the application of two
neural network algorithms, specifically DDPG and SAC, to
move differential robots in a virtual environment containing
obstacles. The main focus of this study is to analyze the robot’s
movement on the playing field, where the objective is for it
to move between specific points on the map without colliding
with obstacles. Our investigation is heavily inspired by the
contributions of [13], similarly exploring the effectiveness of
these algorithms in the specific context of robotic navigation.

In addition to the previously mentioned articles, we would
like to highlight other research at the frontier of knowledge
in robotic computing. We refer to the works of [14], [15],
[16], [17], [18] and [19]. These studies span a wide variety of
subareas in robotics research, including multi-robot trajectory
planning, path planning, and smoothing, as well as decen-
tralized and probabilistic methods for avoiding collisions be-
tween multiple robots. They also explore using reinforcement
learning in football competitions with small and very small
robots. This work and its future developments have benefited
significantly from the contributions of these researchers.

III. METHODOLOGY

A. Reinforcement Learning

This work follows the data flow generally applied in Re-
inforcement Learning, as shown in Figure 1 [20]. Here, the
environment and the agent are presented. The agent receives
initial data from the environment, such as state St and Rt, and
generates an action At, which is executed in the environment,
generating new states and rewards St+1 and Rt+1, which are
processed again by the agent, completing the cycle.

This process is aligned with the Markov Decision Process
(MDP) properties, where each decision is based only on the
current state, thus respecting Markov properties. In a simplified
way, the MDP can be represented as MDP(S,A, P,R), where
S represents the set of states of the environment, A is the set
of actions available to the agent, P is the transition probability
function and R is the reward function ([21], [22] and [1]).



Figure 1. Execution of Reinforcement Learning algorithms

B. rSoccer Overview

To carry out the Reinforcement Learning tests used, the
library rSoccer [7] was used, an environment with simu-
lated physics aimed at training VSSS games, based in the
library GYM [23], widely used in the literature to evaluate
the performance of reinforcement learning algorithms. The
library is available in the Python programming language,
and its environment was modified to allow the player to be
trained with progressive difficulties and personalized rewards.
Furthermore, the rSoccer library supports the rendering of
images for real-time visualization of environments through a
GUI (Graphical User Interface), simplifying the observation of
game progress in the environment and allowing an empirical
evaluation of the behavior of agents.

The VSSS environment includes an out-of-the-box reward
function that evaluates changes between the previous and
current state of the environment and assigns a numerical
value to indicate the importance of the agent’s action in
achieving the goal. This reward comprises three functions: a
ball potential function, a movement function, and an energy
expenditure function. The ball potential function compares
the previous and current position of the ball to determine
whether it has approached the enemy goal, returning a positive
value proportional to the ball’s displacement in the direction
of the goal and calculated by Equation 1. The movement
function provides feedback on the agent’s action, considering
the agent’s approach to the ball, encouraging the robot’s initial
learning, and is defined by Equation 2. Lastly, the reward
is given to agent’s energy expenditure to avoid unnecessary
movements and discard non-optimal paths to reach the ball.
This reward is given by the Equation 3.

Rp =
bpt − bpt−dt

dt
(1)

R⃗B = ||(Bx −Rx, By −Ry)|| (2)

Er = −
E∑

p=0

(|w0|+ |w1|) (3)

With the three functions described, the final reward function
is achieved by including weights for each function so the user
can balance and contribute more appropriate weights to the
algorithms. In Equation 4 Wb, Wm and We are introduced,
representing weights for ball potential, agent movement, and

energy spent, respectively. Note that if the goal indication for
the reward function is given by adding or subtracting Gp,
which is normally a higher value, the algorithm learns the
importance of the goals.

R =


Wb ·Rp +Wm ·Mr +We · Er +Gp Goal
Wb ·Rp +Wm ·Mr +We · Er Didn’t goal
Wb ·Rp +Wm ·Mr +We · Er −Gp Opponent goal

(4)

C. Attacker Simulation Ambient

This subsection covers the theoretical aspects that makeup
one of this research’s main contributions: the modification
of the learning environment, emphasizing progressive training
and stages of increasing complexity.

Aiming to take advantage of Curriculum Learning tech-
niques [10], discrete environments were replaced by a sin-
gle environment, which will have its difficulty dynamically
changed, allowing the agent smooth training, as its learning
curve will dictate the difficulty of the environment. Therefore,
we adopted a number ranging between 0 and 1 for the
difficulty criterion, with 0 being the least complexity and 1
being the most significant difficulty. A difficulty of 0 means
the environment with the robots in a fixed starting position and
immobile. Based on the average rewards from the previous 100
episodes, we define the current difficulty of the environment
to calculate Da, whose effect is described in Figure 2. From
this, Equation 5 describes the calculation of Da, representing
the difficulty of the environment, and which values Da admits.
In this equation, rm = maxr R

λ , R is the set of averages among
the agent’s last 100 rewards, which we select the maximum
value of R for use in this equation. λ is an arbitrary number
representing the reward function’s maximum value, which was
empirically defined as 450 from previous training. Note that
in 5, the minimum value of Da is 0.1.

Da =


0.1 rm ≤ 0.6
0.25 0.6 < rm ≤ 0.7
0.55 0.7 < rm ≤ 0.8
1 rm > 0.8

 (5)

D. Agent Observations

As inspiration from the work of [13], the standard
rSoccer observations in this striker training environment
have been replaced by those described in Table I. Observations
that previously reported absolute coordinates of x and y now
report distance and angle as a way of representing the observed
positions always in relation to the agent so that the neural
network has data that occurs more frequently because it is
centered on the agent’s position, and no longer globally in
the field, thus facilitating the generalization of the network. It
was also decided to reduce the amount of data reported about
other robots, such as linear and angular velocities, since this
information is not of great relevance to the robot’s objective, in
addition to being proof that few observations are needed for the
agent satisfies the requirements of the environment. A visual



Figure 2. Dynamicity of the attacker’s environment

description for a better understanding of the observations can
be seen in Figure 3.

Observations

Distance between agent and ball
Agent to ball angle

Distance between agent and opponent goal
Agent angle to opponent goal

Distance between agent and Mi

Agent angle for Mi

Sine of the agent angle
Cosine of the agent’s angle

Linear velocity in X of the ball
Linear velocity in Y of the ball
Linear speed in X of the agent

Linear velocity in Y of the agent
Agent angular velocity

Table I
OBSERVATIONS FOR THE ATTACKING AGENT USED IN THIS WORK

E. Hyperparameters

The hyperparameter scheme adopted in this research was
based on the work of [13]. The authors made the source
codes available in a repository on GitHub, facilitating their
application in different contexts by other researchers. Although
the main focus of the study is not robotic programming, its
contributions were precious for developing the programming
environment presented in this work. Table II below presents
the hyperparameters considered in this work.

Hyperparameter Description Used Value

a Learning rate 2.5e-5
Batch size Number of samples per training batch 256

Experience memory Replay buffer size 5e5
σ Noise level 0.1
γ Future discount factor 0.99
τ Soft update rate for target networks 0.999

Table II
SOFT ACTOR CRITIC HYPERPARAMETERS

Figure 3. Agent Notes

F. Reward Function
This work considers a modification of the reward function

to improve agent learning. The first change was in the weights
so that the agent better prioritizes the occurrence of goals. An
increase in the weight of the ball gradient was also made to
make the robot learn more quickly that the ball must follow a
particular path. The energy was increased to make it more
obvious to the agent when choosing a shorter route. The
weights used for training are found in Table III, whose values
were explained previously.

Observation Quantity

Wb 2
Wm 0.25
We 1e-3
Gp 500

Table III
WEIGHTS USED IN THE REWARD FUNCTION OF THE ATTACKING

ENVIRONMENT

In Figure 4, we see the inputs and outputs for the attacking
agent, which come from the data presented in Table I. Each
of the inputs is part of the state S of the environment at time
t, and their outputs make up the action A at time t.

Figure 4. Attacking agent input and output diagram



IV. RESULTS AND DISCUSSIONS

In this section, the numerical evaluation results are pre-
sented for the study that compared the performance of two
DRL algorithms, namely SAC and DDPG, applied to the
control of a mobile robot in the context of IEEE VSSS.

It is observed that SAC surpassed DDPG in terms of ob-
taining rewards and effectiveness in carrying out the proposed
tasks. As can be seen in Figures 5 and 6, comparing the re-
wards obtained by the SAC and DDPG methods, respectively.

The graph in Figure 5 highlights four regions with different
colors, each with a different value for Da, representing training
steps with different difficulty levels. Such complexity levels
are determined as described in Equation 5. Generally, it can
be inferred that as Da increases, the performance metric
stabilizes, suggesting that a larger Da could be associated with
a more stable or effective learning policy in the long run.

Similarly, the image in Figure 6 shows the performance
obtained by the DDPG model, considering different learning
stages. Contrary to what was found for the SAC algorithm,
performance is highly affected, decreasing as complexity in-
creases. In the graphs presented in both Figure 5 and Figure
6, the X axis indicates the training steps. In contrast, the Y
axis represents the Simple Moving Average (SMA) calculated
from the last 100 episodes.

Figure 5. SAC algorithm training graph

Figure 6. DDPG algorithm training graph

The experimental results showed that SAC achieved sig-
nificantly superior performance in the attacker control task.
Not only was SAC able to score more effectively against
virtual opponents, but it also showed greater adaptability and
generalization ability to different game configurations and
obstacles. On the other hand, DDPG, although it showed good

initial performance, faced difficulties adapting to incremental
changes in the complexity of the environment, resulting in less
consistent performance.

The superiority of SAC can be attributed to its ability
to explore the space of actions more efficiently and states
thanks to its maximum entropy policy. This allows for a more
comprehensive exploration of the game environment, leading
to more robust and adaptive strategies. Furthermore, the SAC
framework, which emphasizes reward-based learning and error
minimization, has proven to be particularly suitable for the
dynamic and unpredictable environment of IEEE VSSS.

The results suggest that applying Curriculum Learning tech-
niques may have played a crucial role in improving the learn-
ing process, facilitating the progressive adaptation of robots
to increasingly complex challenges. This hypothesis, however,
requires a more detailed investigation for confirmation. This
simulates a more natural and effective learning environment,
where agents master simple tasks before progressing to more
difficult ones.

The results also suggest the importance of a well-defined
reward function in reinforcement learning. The functionality of
dynamically adjusting the environment’s difficulty and reward
based on the agent’s performance proved to be fundamental in
encouraging the robot to learn effective control and navigation
strategies.

V. CONCLUSION

This paper applies Deep Reinforcement Learning (DRL)
algorithms to control robots in the IEEE Very Small Size
Soccer (IEEE VSSS) robot soccer modality. Specifically, Soft
Actor-Critic (SAC) and Deep Deterministic Policy Gradient
(DDPG) control algorithms were considered and modified
to act as attackers, with performances evaluated in a virtual
environment with dynamically changed game complexity. The
learning mechanism takes into account Curriculum Learning
[10] methodology. This methodology emphasizes progressive
training in stages of increasing complexity, taking inspiration
from the efficient learning processes observed in humans and
animals. In summary, the main findings of the research are
listed below:

• DRL algorithms demonstrated effectiveness in controlling
robots within the scope of the IEEE VSSS competition.

• As an attacker, the SAC algorithm not only outperformed
DDPG, but it did so with a level of efficiency that de-
mands respect, as evidenced by its superior accumulated
rewards.

• The DDPG algorithm exhibited a learning curve that be-
gan with progressive improvement, followed by a decline
as the complexity of the environment increased. In con-
trast, despite requiring a more extended training period,
the SAC algorithm demonstrated superior performance
under environmental conditions of varying complexity.

• The superiority of SAC can be primarily attributed to
its maximum entropy policy, which promotes a more
effective exploration of the action space.



• Considering that the primary success metric defined was
the ability to score goals in all episodes with the fewest
possible attempts, it was found that none of the algo-
rithms achieved absolute success. Therefore, the need for
future algorithm improvements is identified to achieve
this goal.

The results listed above suggest a broad spectrum of future
contributions. Among the main lines of investigation underway
by the proponents of this research, the following stand out:

• Explore specific algorithms to improve goalkeeper train-
ing in robotics, considering different reinforcement learn-
ing techniques.

• Expand the scope of performance comparison between
different algorithms, such as SAC and DDPG, to include
new approaches, focusing on their capabilities as attack-
ing players.

• Investigate path planning algorithms that integrate rein-
forcement learning knowledge for better real-time navi-
gation between obstacles, fulfilling the objectives of robot
football.

• Deepen the study of the maximum entropy policy used by
SAC to understand how this approach can be explored or
improved in different competitive robotics configurations.
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